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The Stokes-Boussinesq-Langevin equation, which describes the time evolution 
of Brownian motion with the Alder-Wainwright effect, can be treated in the 
framework of the theory of KMO-Langevin equations which describe the time 
evolution of a real, stationary Gaussian process with T-positivity (reflection 
positivity) originating in axiomatic quantum field theory. After proving the fluc- 
tuation-dissipation theorems for KMO-Langevin equations, we obtain an 
explicit formula for the deviation from the cIassical Einstein relation that occurs 
in the Stokes Boussinesq-Langevin equation with a white noise as its random 
force, We are interested in whether or not it can be measured experimentally. 

KEY WORDS: Stokes-Boussinesq-Langevin equation; Alder-Wainwright 
effect; white noise; Kubo noise; diffusion constant; Einstein relation. 

1. I N T R O D U C T I O N  

Abou t  15 years ago,  Alder  and  Wainwright/~'2/ d iscovered a long- t ime 
tail behav ior  (oct-3/2)  of the velocity au toco r r e l a t i on  funct ion for hard  
spheres by a c o m p u t e r  s imulat ion.  Since then, much effort has gone into 
conf i rming such an Alder-Wainwright  effect in both  exper iment  and  theory  
on the basis of  K u b o ' s  l inear  response theory  in s tat is t ical  
physics. r176 In the course of these invest igat ions,  it has 

become clear that  the Brownian  m o t i o n  with the A l d e r - W a i n w r i g h t  effect 
can be descr ibed by an equa t ion  t rea ted  by Stokes (28t and  Boussinesq/5'6t in 
hydrodynamics .  Its equa t ion  with a r a n d o m  force reads  

dt \ 7 c j 3  o o ( t - s )  j/2 ds d s + W ( t )  ( l .1)  
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where m* is an effective mass given by 

m* = m + 2rcr3p (1.2) 

Here we consider the motion of a sphere of radius r and mass m moving 
with an arbitrary velocity X(t) at time t in a fluid with viscosity t /and den- 
sity p subject to a random force W(t) at time t. 

On the other hand, we k n o w  (7'29) that the time evolution of the 
Ornstein-Uhlenbeck Brownian motion as treated by Einstein (81 and 
Langevin (19) reads 

dX( t ) 
m _ 67zrtIX(t) + [2kT(67zrtl) ] 1/2 /~(t) (1.3) 

dt 

where k is the Boltzmann constant, T is the temperature of the fluid, an d / )  
is a Gaussian white noise, that is, the time derivative of a standard Brow- 
nian motion B. It is known (7'29) that the Ornstein-Uhlenbeck Brownian 
motion can be characterized as a stationary Gaussian process with 
Markovian property. 

We raise the following questions: 

1. What kind of qualitative nature does the solution of Eq. (1.1) 
have? 

2. Conversely, can a stochastic process with such a qualitative nature 
be governed by Eq. (1.1)? 

For that purpose, we have to clarify the true character of the random force 
W in Eq. (1.1) from the viewpoint of the theory of stochastic processes. 

In a series of papers {21 24) we have tried to characterize the class of 
stochastic differential equations describing the time evolution of stationary 
Gaussian processes with T-positivity. In Ref. 24 we obtained two kinds of 
equations, called the first KMO-Langevin equation and the second KMO- 
Langevin equation. The former was derived from the structure theorem of 
the outer function and in consequence it has a white noise as a random 
force, which gives a generalization and a refinement of the [cq fi, 7]- 
Langevin equation in Refs. 22 and 23. The latter was derived from the 
structure theorem of the Laplace Fourier transform of the correlation 
function, and then the random force in it is in general colored, which we 
called the Kubo noise with its physical origin in Kubo's linear response 
theory in statistical physics. (13 16) 

Our motivation in these investigations was to clarify the mathematical 
structure of the fluctuation-dissipation theorem in Kubo's linear response 
theory in statistical physics with the desire for application from mathemtics 
to physics. 

In the first part of this paper, we will show in Sections 2 and 3 a 
generalized fluctuation-dissipation theorem on the basis of the first K M O -  
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Langevin equation, which gives a generalization and a refinement of the 
results in Refs. 22 and 23. We further show in Section 4 Kubo'sfluctuation- 
dissipation theorem on the basis of the second KMO-Langevin equation. 
The physical meaning and significance of the fluctuation-dissipation 
theorems will be given in Section 2. 

As a consequence, we will find (Theorems 2.1, 3.1, and 4.1) that a fun- 
damental difference between two kinds of fluctuation-dissipation theorems 
stated above lies in the fact that the classical Einstein relation holds on the 
basis of the second KMO-Langevin equation, but does not hold on the 
basis of the first KMO-Langevin equation. Its degree of deviation from the 
Einstein relation can be calculated. We note that the description of the fluc- 
tuation-dissipation theorem should be given on the basis of the equation 
that describes the time evolution of the process under consideration, 
because under additional conditions we can rewrite the first (resp. second) 
KMO-Langevin equation into the second (resp. first) KMO-Langevin 
equation by way of a change of the coefficients in the equations. 

In the last part of this paper, we will find in Sections 5 and 6 that the 
correlation function R K in the investigations of Hauge and Martin-L6f (l~ 
and Kubo, 117) whose object is to confirm the Alder-Wainwright effect, has 
a qualitative nature of T-positivity. We then see from Section 4 that RK is 
realized as the autocorrelation function of the unique stationary solution 
XK for the Stokes Boussinesq Langevin equation (1.1) where the random 
force W is Kubo noise, as a concrete example of the second KMO- 
Langevin equation. We note that RK cannot be realized as an 
autocorrelation function of the stationary solution for some first KMO- 
Langevin equation. 

We know (24) that the white noise plays the same role that the Kubo 
noise does as a random force in the derivation of KMO-Langevin 
equations. We will find in Section 7 that the autocorrelation function R ~v of 
the unique stationary solution Xw for the Stokes-Boussinesq-Langevin 
equation (1.1) with the white noise c~w/) as random force has the same 
qualitative nature of T-positivity as RK, where c~w is a positive constant. 
We note that Xw can be a unique stationary solution for some second 
KMO-Langevin equation whose systematic part is different from the one in 
equation (1.1). Furthermore, we will show that Rw satisfies the Alder 
Wainwright effect, similarly as RK: 

RK(0) 
lim (flSB 03/2 RK(t) = ~ a 

t ~ : s c  

lim (flsBt) 3/2 Rw(t) - ~ R_w(O) {fo~ 

(1.4) 

1 JY dy)-' 
1 + y + a x f  f ( 1 -  y)2+a2y 

(1.5) 
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where 

flsu = 6 n rq /m*  (1.6) 

a = (67cr3p/m*)t/2 (1.7) 

By applying the Einstein relation in Section 4 and the genera l i zed  

Einste in  relation in Section 2 to X K and Xw, we will obtain in Sections 6 
and 7 the following results: 

R~(0) 
DK = - -  (1.8) 

flsB 

vw= tl+y+a t /19/ 

where O K and D w are the diffusion constants of XK and Xw, respectively, 
defined by 

DK = R K ( t  ) dt (1.10) 

D w = j o  R w ( t ) d t  (1.11) 

We note that DK and D w are concretely obtained as follows: 

DK = 1/3(27r)l/2rrl (1.12) 

D w =  �89 2 (1.13) 

In Section 8 we will investigate the l ima  --* 0 behavior of the deviation 
from the Einstein relation in (1.9) and the processes XK and X w. We note 
that for a fixed r/ the lira a--, 0 behavior is equivalent to the lira p ~ 0 
behavior by (1.2) and (1.7). We will show that 

lim D~v = 1 (1.14) 
a ~ 0  

and under the condition 

~ w = (12x/2~z3/2rtl ) b'2 (1.15) 

we have 

lim X K = lim X w  = X ~  (1.16) 
a ~ 0  a ~ 0  



Brownian Motion with Aider-Wainwright Effect 957 

where Xo~ is the Ornstein Uhlenbeck Brownian motion whose time 
evolution is governed by Eq. (1.3) for the case where kT= (27z) 1/2. We note 
that under the condition (1.15), DK and Dw coincide with the diffusion 
constant of X~. Furthermore, we will show the following interesting limit 
theorem under the condition (1.15): 

/ ,. Rw(t)~ 
lim / nm - - / =  2 (1.17) 

lim {lim Rw(t)~ = 1 (1.18) 

In closing this section we are interested in whether the deviation from 
the Einstein relation in (1.9) that occurs in the case where the random force 
W in the Stokes-Boussinesq-Langevin equation (1.1) is a white noise can 
be measured experimentally. In a forthcoming paper (~5) we will find that for 
the discrete time series the Einstein relation deviates from the one in the 
Markovian case not only on the basis of the first KMO-Langevin equation, 
but also on the basis of the second KMO-Langevin equation. Therefore, it 
seems that such a criterion as entropy is needed, besides the Einstein 
relation, in order to determine which of the white noise and the Kubo noise 
is adequate as the random force in the KMO-Langevin equation under the 
condition that its systematic part is given for modeling. The entropy 
criterion will be discussed in Ref. 25. 

2. A G E N E R A L I Z E D  F L U C T U A T I O N - D I S S I P A T I O N  T H E O R E M .  1 

Let X =  (X(t); t~ R) be a real, stationary Gaussian process with mean 
zero and covariance function R of the form 

? y  

R ( t ) = j  e I'l~a(d2) ( t ~ R )  (2.l) 
0 

where ~r is a Borel measure on [0, oo) satisfying the following condition: 

or({0}) = 0 and 0 < a([0, oo)) < oo (2.2) 

By Theorem 2.1 in Ref. 21, we know that R has a spectral density A of 
Hardy type such that 

R(t)-- fR e-"~ A(~) d~ (t~R) (2.3) 
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A ( ~ ) =  ~2+22cr(d), ) ( ~ s R -  {0}) (2.4) 

I~ (2.5) 

Then we can obtain  an outer  function h and a canonical  representa t ion 
kernel E with a one-dimensional  Brownian  mot ion  (B(t); t ~ R) having the 
propert ies  (H.1) - (H.4) ,  (E.1)-(E.4),  (B.1), and (B .2 ) in  Ref. 24. 

In this section, we shall t reat  the case where the following condit ions 
are satisfied: 

o~2 -1 a (d2)  < oo (2.6) 

o~)oa(d2) < oo (2.7) 

By Theorems  2.2 and 3.1 in Ref. 24, we obta in  first KMO-Langevin data 
(~, fi, p ) e 2 ]  associated with a such that  for any C e C  + 

c~ 1 
h(~) = (2~)~/~ fl _ i~ - i~ ~ [1/(2 - i~)] p (d2)  (2.8) 

We recall that  (c~, fi, p) e L-~ means  that  

c~>0 and f i > 0  (2.9) 

p is a Borel measure  on [0, oo) with p({0})  = 0  
(2.10) 

and ~ - (  p(d)~) < oo 

Fur thermore ,  we know from T h e o r e m  4.1 in Ref. 24 that  the t ime evolut ion 
of the process X is governed by the following first KMO-Langevin equation: 

= - f i X  - lim 7,: * X + cd~ (2.11 ) 
e.[0 

where for each e > 0, 7~ is a function on R defined by 

re, c~ 
7~(t) = X(o,~l(t) e- ';- p (d2)  (2.12) 

We note that  Eq. (2.11) holds in the sense of r a n d o m  tempered  dis- 
tr ibutions.  Then  we shall show the following: 
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T h e o r e m  2.1.: 

(i) For  any ~ e C  + w ( R -  {0}), 

1 h(~) 
- -  e -  y~ , ( t )  d t  ~r~Reh(~+i0)d~ 

(ii) ct2/2 = R(0) C/~# 

959 

where C/~# is a positive constant  defined by 

i ]2 } C~:,=7c f l- i~ 1 + l i m  ei~-'7~:(t) dt d~ (2.13) 
~:,[0 ~0  

(iii) D = ~2/2fl2 

where D is a positive constant  defined by 
~zC 

D= 1 R(t)& (2.14) 
0 

R(O) C/~,; 
(iv) D - 

P B 

fo~ R(O (v) c~,.~,- l = ~ ~(t) dt 

Proof. By (E.2) and Lemma 2.7 in Ref. 24, we have 

= (2/rc)'/2 fR Re h(~ + i0) d~ (2.15) 

which together with (2.8) yields (i). Similar to (9.13) in Ref. 22, we get (ii) 
from (H.4) in Ref. 24 and (2.8). Since 

i7 D =  2 tot(d2) (2.16) 
) 

then (iii) follows from formulas (i) and (ii) in Theorem 3.3 in Ref. 24. From 
(ii) and (iii), we immediately have (iv). Part (v) can be shown as follows. 
First, we claim that for any t > 0, 

E ( t )  = (27c)'/2c~ - -  f l  E ( s )  ds - (7 * E ) ( I )  (2.17) 

where 7 is a function on R defined by 

7(t) =Zio,~)(t) I ~ e  r~. p(d2) (2.18) 
J 0  
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By Lemma 4.3 in Ref. 24, which is equivalent to Eq. (2.11 ), we have 

;o X(t )  - X(O) = c~(B(t) - B(0)) - X(s)  ds 

- lim[(7~. * X)( t )  - (7~ * X)(0)] 
eJ.O 

for any t > 0 .  By multiplying both sides by B ( t ) - B ( O )  and then noting 
(B.1), (B.2), Lemma 2.8(iv), and (4.11) in Ref. 24, 

E(s) ds = (27r)l/zc~t - fl E(u) du ds - ( ' / �9  E)(s)  ds 

and then by differentiating both sides with respect to t, we have (2.17). 
Next we claim that for any t > 0, 

=~2~ :, JS-fo ~ R ( t - s )  7(s)ds  (2.19) R(t) - ~ Jo R(s) 

By (E.4) in Ref. 24 and (2.17), we have, for any t>O,  

R( t )  = Jo E(s) d s -  E(u) du E(s) ds 

Ifo 27r ()~ * E)( t  + s) E(s) ds 

Furthermore, we can see from (E.4) and Theorem2.1(iii) in Ref. 24, 
part (iii) of Theorem 2.1 in this paper, and (2.16) that for any t > 0 ,  

- -  E(u) du E ( s ) d s = ~ +  R ( s ) d s  

Therefore, we get 

fo  fo R ( t ) = ~ - p  R(s)ds- (~ �9 E)(t +s) E(~) ds 

Since by (E.4) in Ref. 24 we have, for any t > 0, 

fo 2-~ (7 * E)( t  + s) E(s) ds = R( t  - s) 7(s) ds 

we can obtain (2.19). 
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Finally, we separate 
, x :  ~ t  r - 7 .  

Jo R(r- s),/(s) d~= jo R ( t -  s) '/(s) ds + J, R(t -  s) 7(s) ds 

= I(t) + II(t) 

By Lemma 2.8(iv) in Ref. 24, 

lim I(t) = 0 
t$0 

By the monotone convergence theorem, 

lim lI(t) = j R(s) 7(s)ds 
r;O 0 

Therefore, we see from (2.19) that 

2 fO ~ R(O) =-~-- R(s) 7(s) ds 

By combining it with (iv) in Theorem 2.1, we have (v). | 

For future use, we arrange (2.17) and (2.19) into the following: 

C o r o l l a r y  2.1. For a n y t > 0 ,  

n t  

(i) E(O = (2,z)l/~-/~ j E(s)ds-(~,E)(t)  
o 

2 t 

(ii) R(t)=~-fijoR(S)dS-jo R(t-s) 7(s)ds 

By taking the same argument as Theorem 9.1 in Ref. 21 and then using 
Theorem 2.1(v), we have 

T h o o r e m  2.2: 

(i) Cl~,jfl>~ 1. 
(ii) The following five statements are equivalent: 

(a) C~,;,,/p = 1. 

(b) ~/= O. 
(c) p = 0. 
(d) R = cEin (0, c~) with a positive constant c. 

(e) X has a simple Markovian property. 
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Before stating the physical meaning of Theorem 2.1, we give the 
following example: 

E xa mpl e  2.1. Let X = ( X ( t ) ;  t ~ R )  be an Ornstein-Uhlenbeck 
Brownian motion whose time evolution is governed by the [~, fi, 0]- 
Langevin equation/7'22) 

k = - f i x  + ~B (2.20) 

where ~ and fi are positive constants and (B(I); t ~ R) is a one-dimensional 
Brownian motion. Then it can be seen that the covariance function R~./~, 
outer function h~,,, canonical representation kernel E~4~, and positive con- 
stants C/~.o and D~./~, which are defined by (2.13) and (2.14), are given by 

g2 

R ~ . l ~ ( t ) = ~  e 1~1,1 ( t~R)  (2.21) 

1 
h~,/~(~) - 22 fi - i~ (~" ~ C + ) (2.22) 

E~,l~(t)=Z[o_~l(t)(2~)l/2~e /~' ( t~R)  (2.23) 

C/,,o = fi (2.24) 

D~,I~ = o~2/2~ 2 (2.25) 

In particular, we have 

3{ 
R~,/~(t)-2(2~z)l,2fiE~,/~(t) [-t ~ (0, ~ ) ]  (2.26) 

which corresponds to (d) in Theorem 2.2(ii). Therefore, we can rewrite 
relation (i) in Theorem 2.1 as 

fo 1 = 1 eSr dt [ ~ e C +  ~m ( R -  {0})] (2.27) 
fi - i~ R~,/r O ) 

From (2.21) and (2.25), we immediately obtain 

c~2]2 = R~,l~(O ) fi (2.28) 

D~,/; = R~,t;(O )/fi (2.29) 

which corresponds to (ii) and (iv) in Theorem 2.1 together with (2.24), 
respectively. 

Concerning the physical meaning of Theorem2.1, we give three 
remarks. 
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Remark 2.1. The left-hand side in relation (i) in Theorem2.t  
[resp. relation (2.27)] denotes the complex mobility of the system X 
described by Eq. (2.11) [resp. Eq. (2.20)], which represents the response of 
the system described by Eq. (2.11) [resp. Eq. (2.20)] to the external force. 
On the other hand, the right-hand side in relation (i) in Theorem 2.1 [resp. 
relation (2.27)] is determined by the outer function (resp. covariance 
function) of the system X and so the spectral measure of X, which 
represents the thermal fluctuation of the system X in equilibrium without 
the external force. 

Furthermore, the left-hand side in relation (ii) in Theorem 2.1 [resp. 
relation (2.28)] denotes the fluctuation power of the random force ~/~ in 
Eq. (2.11) [resp. Eq. (2.20)]. On the other hand, the right-hand side in 
relation (ii) in Theorem 2.1 [resp. relation (2.28)] is determined by the 
positive constants R(0) and C~,;. [resp. R(0) and fl]. The positive constant 
C~,>. (resp. fi) is determined by the drift coefficient representing the 
systematic part of Eq. (2.11) [resp. Eq. (2.20)]. It is physically allowable 
for us to regard the positive constant R(0) as the absolute constant kT in 
equilibrium described by Eq.(2.11) [resp. Eq.(2.20)], where k and T 
denote the Boltzmann constant and absolute temperature, respectively. 

The relation (2.29) was first discovered by Nyquist, (2~ who showed 
that the random electromotive force appearing across a resistor is deter- 
mined by its impedance. In this case, the response to external force is 
represented by the dissipation of the energy. 

In order to distinguish two kinds of representations that relate, for a 
system in thermal equilibrium, two physically distinct quantities of fun- 
damental experimental significance the fluctuation behavior and the dis- 
sipative behavior(l~ (~4 16) called relations (2.27) and (2.28) the first 
fluctuation-dissipation theorem and the second fluctuation-dissipation 
theorem, respectively. By taking this into account, we call relations (i) and 
(ii) in Theorem 2.1 the generaIizedfirst fluctuation-dissipation theorem and 
the generalized second fluctuation-dissipation theorem, respectively. Further- 
more, we call the positive constant C/3. ~ the generalized friction constant. 

R e m a r k  2.2. We note 114 16) that the positive constant D defined by 
(2.14) is transformed as 

D = lim E ( [ ~  X(s) ds] 2) (2.30) 
, ~  2t 

This is called the d~fusion constant or the fluctuation power of X. Relation 
(2.29), which indicates that the diffusion constant D is inversely propor- 
tional to the friction coefficient fi in Eq. (2.20), is called the Einstein 
relation.(8,14 16) Further,(14 16) the Einstein relation (2.29) corresponds to a 
special case of the first fluctuation-dissipation theorem (2.27). 
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However, we find from relation (iv) in Theorem 2.1 that there occurs 
in the system described by Eq. (2.11) a deviation from the Einstein relation 
(2.29) for the system described by Eq. (2.20), with the degree of deviation 
calculated by formula (v) in Theorem 2.1. Furthermore, we will find in Sec- 
tion 7 that the degree of deviation from the Einstein relation can be con- 
cretely parametrized for the Stokes Boussinesq-Langevin equation with 
white noise as the random foce, which gives a concrete and physical exam- 
ple of the first KMO-Langevin equation (2.11). For  this reason, we call 
relation (iv) the generalized Einstein relation. 

R e m a r k  2.3. We note that relation (iii) in Theorem 2.1 for the 
system described by Eq. (2.11) is the same as relation (2.25) for the system 
described by Eq. (2.20). 

3. A GENERALIZED F L U C T U A T I O N - D I S S I P A T I O N  T H E O R E M .  2 

In this section, we treat the case where the measure a in (2.1) satisfies 
the following conditions: 

j 2 ~a(d)~) < ~ (3.1) 
0 

o~2a(d)~) = oo (3.2) 

Corresponding to (2.8), by Theorems 5.2 and 6.1 in Ref. 24, we obtain the 
first KMO-Langevin data (•, p)~ 5 ~  associated with ~r such that for any 
~ C  + 

1 1 
h(~) = (2~),/2/~ _ i~ ~ [1/(2 - i~)] p(d2) (3.3) 

Furthermore, we know from Proposition 7.1 in Ref. 24 that relation (3.3) 
implies that X satisfies, in the sense of random tempered distributions, 

- f i X  - lim 7,~ * 5[ + 1] = 0 (3.4) 
~: dO 

Similar to (2.13), we define the generalized friction constant C/~,~ by 

C ~'~,~, -- ~ i~ lim e '~' 7~(t) dt d~ (3.5) 

and the diffussion constant D by (2.14). Corresponding to (ii) (v) in 
Theorem 2.1, we shall show the following: 
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P r o p o s i t i o n  3.1 : 

(i) �89 R(0)C~? 

(ii) D = 1/232 

R(0) cy,? 
(iii) D - 

3 fi 
crT,~ _ ; ~  R(t) 

(iv) 
fl Jo  R-T6T ~(t) dt 

Proof. Similar to (ii) in Theorem 2.1, we have (i) from (H.4) in 
Ref. 24 and (3.3). By noting (2.16), we have (ii) from formula (i) in 
Theorem 6.3 in Ref. 24. Part (iii) follows immediately from (i) and (ii). For 
the proof of (iv), we claim that for almost all t > 0, 

--3 j E(s) d s -  {7 * E)(t) + (27c) b'2 = 0 
o 

(3.6) 

;o ' 3 R(s) ds + R ( t -  s) 7(s) ds = 2fl (3.7) 

By noting that EeL~c~ L~o c and then using Eq. (3.4), we find that (3.6) can 
be proved similarly as (2.17). We note that (3.6) implies, for any t > 0, 

(2~)1/2Jo E(s)ds=fl E(s) E(u)du ds 

fo + E(s)( 7 * E)(s + t) ds 

Furthermore, since it folows from Lemma 5.2(iv) and Theorem 5.1(iv) in 
Ref. 24 and (ii) that 

f/J E(s) ds = (2~z)1'2/3 

we find that (3.7) can be proved similarly as (2.19). In particular, we see 
from (3.7) that 

fo~R(x) 7(s) ds = 1/23 

which together with (i) gives (v). I 
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Since we cannot regard Eq. (3.4) as an equation describing the time 
evolution of X, it is not clear how (3.3), (i), and (iii) in Proposition 3.1 give 
the generalized first fluctuation-dissipation theorem, generalized second 
fluctuation-dissipation theorem, and generalized Einstein relation, respec- 
tively, on the basis of Eq. (3.4). In order to derive an equation that 
describes the time evolution of X, we used in Ref. 24 the following con- 
dition: 

0~2 2 a(d2) < oo (3.8) 

We know from Theorem 7.1 in Ref. 24 that Eq. (3.4) can be rewritten as the 
following first KMO-Langevin equation: 

1 1 
= - - f i X + - ( Q  * X ) + - l ~  (3.9) 

q q q 

where q and Q are a positive constant and a bounded measurable function 
on R, respectively, defined by 

q = 7(s) ds 

Q(t)= )~Eo.o~)(t) fo ~ 

(3.10) 

v(s) ds (3.11) 

Finally, we shall show how (3.3), (i), (iii), and (iv) in Proposition 3.1 
give the generalized first fluctuation-dissipation theorem, generalized 
second fluctuation-dissipation theorem, generalized Einstein relation, and 
deviation from the Einstein relation, respectively, on the basis of Eq. (3.9). 

T h e o r e m  3.1.:  

(i) For a n y ~ e C  + 

fo ~ ] '  + ( _ r 1 6 2  e'~, Q(t) & 
q 

={limhti /-1-- 'I:  1 

(iii) D -  (l/q)2 
2(fl/q) 2 

(l/q) 2 
( i i )  2 - -  R(O)C'~/u"//q 
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e(0) c~%,/q 
(iv) D - fl/q fl/q 
(v) 1 c~",~'/"-1 fo~ (1 R(t)~ fl/q q R ( O ~ )  -R- - -~ /7( t )  dt 

ProoL By (3.10) and (3.11), we can rewrite (3.3) as 

1/q 1 
h ( ~ )  = - -  

(2~) l/2 fl/q + ( _ i~) + ( - i~) 2 ~ e ict Q(t) dt 

for any ~ ~ C +. On the other hand, it follows from (2.14), (3.3), Proposition 
3.1(ii), and (3.10) that 

hue)-1 _ [Tz 1 S ~  R(t)  dt] 1 
(2~)1/2q = lim 

e, l O  8 

and so we have (i). Since Cs, ~ defined by (3.5) satisfies 

1 
ac ~ - -  

/ t ,7 Cfl/q#/q q2 C~ (3.12) 

we see that (ii) follows immediately from Proposition 3.1(i). Similarly, 
Proposition 3.1(ii) and Proposition 3.1(iii) with (3.12) give (iii) and (iv), 
respectively. Since 

C fl~/q,y/q 1 ~ - -  oc, 
fl/q fl/q C~.:, 

we find that (v) follows from Proposition 3.1(iv) and (3.10). II 

R e m a r k  3.1. Since (i), (ii), and (v) in Theorem 3.1 play the same 
role for Eq. (3.11) as (i), (ii), and (iv) in Theorem 2.1 do for Eq. (2.11), it is 
reasonable for us to call (i), (ii), and (iv) in Theorem 3.1 the generalized 

f irst  fluctuation-dissipation theorem, the generalized second jquctuation-dis- 
sipation theorem, and the generalized Einstein relation, respectively. 

R e m a r k  3.2. We note that (v) in Theorem 3.1 implies that the 
degree of deviation from the Einstein relation is less than 1, different from 
(v) in Theorem 2.1, which implies that it is greater than or equal to 1. 

R e m a r k  3 .3 .  Since we treat the case where condition (3.2) is 
satisfied, we find that X has no Markovian property and so the generalized 
friction constant C~# cannot give such a characterization of Markovian 
property for X as Theorem 2.2(ii). 

822/45/5-6-13 
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4. KUBO'S  F L U C T U A T I O N - D I S S I P A T I O N  T H E O R E M  

In this section, we treat the case where the measure ~r in (2.1) satisfies 
condition (2.6), but does not necessarily satisfy condition (2.7): 

R ~r(d2) < ~ (4.1) 
~0 

Together with the first KMO-Langevin data (~,/3, p) in (2.8) or (/3, p) in 
(3.3), by Theorems 8.1 and 8.5 in Ref. 24, we have the second KMO- 
Langevin data (c%,/30, Po) ~ L,('~ associated with a such that for any ~ ~ C + 

1;0 o ] ,  -~ eiC'R(t) d t -  (2~z)~ n /3o- i~ - i~ [ 1/(2 - i~)] po(d2) (4.2) 

We have found (24) that it is impossible to derive an equation with 
white noise as a random force that describes the time evolution of X. For 
this reason, we have in Ref. 24 introduced the colored noise I=(I(~b); 
~b ~ 5e(R)), which is called the Kubo noise, as a stationary random tempered 
distribution: 

(4.3) 

where h o is an L2-function on R defined by 

ho = (X{o,~)R)- (4.4) 

By Theorem 8.3 in Ref. 24, we have the following representation with the 
causal property: 

X(t) q)(t)dt-(2~z)l n R(t) I(~(" +t))dt [~beSP(R)] (4.5) 

~,~x(t)=Y{(t)  ( t e R )  (4.6) 

which gives a mathematical justification of the random force in Kubo's 
linear response theory. (13 16) By using (4.2) and (4.3), we know from 
Theorem 8.4 in Ref. 24 that the time evolution of X, in the sense of random 
tempered distributions, can be governed by the following second KMO- 
Langevin equation: 

= -/3oX --lira 7o,~ * X + ~ol (4.7) 
el, 0 
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where for any ~ >~ 0 ,  7o,~  and 70 are functions on R defined by 

7o,~(t) = Z(o,~)(t) f f  e-~;p(d2) (4.8) 

7o = 70,0 (4.9) 

We further define the tempered distribution R., ~ by 

R;'~ = JR ~(t) sgn(t) 7o(t) dt [~b e J ( R ) ]  (4.10) 

Then, corresponding to Theorem2.1 or Theorem 3.1, we show the 
following: 

T h e o r e m  4.1 : 

(i) For any r e C + 

r flo -- i~ -- i~ lira ei~'7o.,:( t ) dt - ei~' R( t ) dt 
~+o R(Oi 

(iia) Aw(d~) = R(0)n flo + 22 + 42 po(d2) d~ 

i ,imC J - - e - y o , ~ ( t )  dt d~ 
7I" e l O  JO 

(iib) Rw - R(O) (rio6 + [q.,o) 

where Aw and Rw are the spectral measure and the covariance distribution 
of the random tempered distribution W = %I. 

( i i i )  D = R(O)/flo 

Proof. We recall formula (i) in Theorem 8.2 in Ref. 24: 

~o = R ( o ) / ( 2 ~ )  ~/2 (4.11) 

Equation (4.2) together with (4.11) gives (i). Part (ii) follows from 
Propositons 8.1(iii) and (iv) in Ref. 24. Finally,. (iii) follows from formula 
(ii) in Theorem 8.2 in Ref. 24. | 

R e m a r k  4.1. By using (4.11), we find that (i) and (ii) in 
Theorem 8.1 correspond to the first fluctuation-dissipation theorem and the 
second fluctuation-dissipation theorem, respectively, in the sense of 
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Remark 2.1. Furthermore, (iii) is the Einstein relation. We call (i)-(iii) in 
Theorem 4.1 Kubo's fluctuation-dissipation theorem. 

R e m a r k  4.2. By (iii) in Theorem 4.1 and (4.11), we obtain 

D = (2rc)1/2%/fio (4.12) 

which implies that relation (2.25) for the system described by Eq. (2.20) 
does not hold for the system described by the second KMO-Langevin 
equation (4.7), in contrast to relation (iii) in Theorem 2.1 [resp. relation 
(iii) in Theorem 3.1] for the system described by the first KMO-Langevin 
equation (2.11) [resp. the first KMO-Langevin equation (3.9)]. 

R e m a r k  4.3. However, we find from formulas (i) and (ii) in 
Theorem 3.3 in Ref. 24 and the reasoning in the proof of Theorem 8.2 in 
Ref. 24 that 

ctz/zfl 2 = Duo (4.13) 

where the positive constant Dxo is the diffusion constant of the stationary 
Gaussian process Xo with the covariance function Ro given by 

Ro(t)=~ R(Itl+s)R(s)ds (t~R) (4.14) 

5. S T O K E S - B O U S S I N E S Q - L A N G E V I N  E Q U A T I O N  

We shall consider the motion of a sphere of radius r and mass m 
moving with an arbitrary velocity X(t )  at time t in a fluid with viscosity r/ 
and density p. Denoting by W =  ( W(t); t e R) and F =  (F(t); t e R) the fluc- 
tuating force and drag force acting on the sphere, respectively, we see that 
Newton's equation becomes 

m dX(t) /d t  = - F ( t )  + W(t)  in R (5.1) 

By taking the inverse Fourier transform of both sides of Eq. (5.1), we find 

m ( - i { )  X(~) = -P(~)  + 1~7(~) inR (5.2) 

and so for fixed almost all ~ R -  {0} 

d 
m--tiTle J ' r  i ' r162 i'r162 in R (5.3) 

Equation (5.3) represents the time evolution of the motion of a sphere of 
radius r and mass m vibrating with frequency ~ in such a situation that the 
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velocity, fluctuating force, and drag force at time t are given by e-<J~({), 
e -  ''~W(~), and e-"@({),  respectively. By solving a linearized 
Navie>Stokes equation subject to imcompressibility and stick boundary 
conditions in hydrodynamics, Stokes (2s/ showed that the drag force for 
Eq. (5.3) is given by 

[ e "'@(~)=6~rr/ 1 + \ ~ )  e i'~2({) 

+ 3~r2 (~)~/2 [1 .2r['~P'l/2] d 
+vt ) -m, 

and so 
( 

P(~) = ~(6~rrt + 3~r22pq~) 

+I3;cr2(2prl)'/2-~ 27zr3 7(-i~)} 2(~) +--~-- p ]  (5.4) 

By taking the Fourier transform of both sides of Eq. (5.4), Boussinesq (5'6'181 
has shown that the drag force F for Eq. (5.1) is given by 

[-! dx(,) 
F(t)=2~pr 3[_3 dt + X(t) 

+ J_~ ( t - s )  ~/2 ds ds 

Therefore we find that Eq. (5.1) can be rewritten as 

dY(t) _6~zrrlX(t ) _ 6rcr 2 __ _ _  _ _  m* d---~--= ~ ( t - s )  '/2 ds ds+ W(t) (5.5) 

where m* is the effective mass given by 

m* = rn + ~gr3p (5.6) 

De f in i t i on  5.1. We call Eq. (5.5) the Stokes-Boussinesq-Langevin 
equation. 

From the viewpoint of the theory of stochastic differential equations, it 
seems necessary to pay attention to the second term on the right-hand side 
of Eq. (5.5), because it is a sort of singular integral. For this reason, we 
return to (5.4) and then substitute it into (5.2) to obtain 

X(~) = [(2TC) 1/2 hs(~) ] J~(~) (5.7) 
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where h s is the frequency response function on C + ~ ( R -  {0}) defined by 

1 1 
hs(~) = (2rr) '/2 6~zrq + m*( - i~) + 6~r2(prl)l/2( - i~)1/2 

(5.8) 

where for any complex { e C - { z e C ;  R e z 4 0 ,  I m z = 0 }  (_ i~ )1 /2  stands 
for exp �89 I~l + i Arg ~) ( - r r  < Arg ~ < zr). 

By using the formula 

fo ~ 1 1 7z )_i~)l/2d2--(_i~)l/~------- ~ for any ~ e C  + (5.9) 

we find that the function h s in (5.8) can be rewritten as 

C~su 1 
hs(~) = (27~) l/2 flSB -- i~ -- i~ 5~ [1/(2 -- i{)] PsB(d).) (5.10) 

where esB and flsB are positive constants and PsB a Borel measure on 
[0, m) given by 

O~sB =/m* (5.11 ) 

fisu = 6rtr~l/m* (5.12) 

6r2(ptl) 1/2 1 
PsB(d,~) = m* 2l/~ d2 (5.13) 

By applying Theorems 3.1 and 8.5 in Ref. 24 tp the triple (C~sB, fisB, PsB), 
we obtain two Borel measures CrsB and VsB on [0, or) such that 

~rsB = L ~  (( sB, fisB, PsB)) 

VSB = L21((0~SB, flSB, PSB)) 

(5.14) 

(5.15) 

In fact, it follows from Theorem 2.1 and Lemma 2.6 in Ref. 24 that 

t_ o ~ VsB(d2') VsB(d)~) 

Es(t)  = [Ls(t) = Z~~176 f o e  '%su(d2) 

(5.16) 

(5.17) 

The concrete form of the measure Vsu in (5.15) and (5.17) is obtained 
in Refs. 11 and 17: 

( 2 )  1/2 ,~?/2 
VsB(d)t) = C~sBesu (fisB_ ~,)2 + e~B2 d2 (5.18) 
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where esB is a positive constant defined by 

e sB = 6~zr2(ptl) 1/2/m (5.19) 

Furthermore, we see from (5.9), (5.10), (5.17), and (5.18) that the measure 
asB in (5.14) and (5.16) can be represented by 

asB(d2 ) = ~B eSB ~ d2 (5.20) 
rc flsB + 2 + esBx/~ (flsB -- 2) 2 + e~s2 

We note that 

fO)~-20"sB(d2 ) =- fO ~ 3~ 2VsB(d.,~ ) = OO 

f ?  (] + ) ~ - l ) a s s ( d ~ ) +  f0 ~ (1 + , ~ - l ) v s B ( d 2 ) <  @ 

f o  .~vsB(d2)= 

f o  )~asB(d)o) < oo 

f o  22asB(d2 ) = oo 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

6. THE SECOND S T O K E S - B O U S S I N E S Q - L A N G E V I N  
EQUATION 

In this section we consider the nonnegative-definite function R K on R 
defined by 

fo o RK(t) = e I'l%sB(d)o) (6.1) 

where VSB is the Borel measure on [0, oo) in (5.18). Let X K = (XK(t); t e R )  
be a real, stationary Gaussian process on a probability space (f2, ~ ,  P) 
with mean zero and RK its correlation function, and with hK the outer 
function of RK [see (H.1) in Ref. 24]. 

In order to derive an equation that describes the time evolution of XK, 
we use the Kubo noise I = (I(~b); ~b e 5P(R)), which was defined by (4.3) as a 
stationary random tempered distribution: 

I(~b)(oJ) = ~ • (t) dB(t, co), a.s. co (6.2) 
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where (B(t); tER)  is a one-dimensional Brownian motion. Since (5.15) 
implies that the triple (%B, flsB, PsB) represents the second KMO- 
Langevin data associated with VsB having condition (5.22), we know from 
(4.7) that the time evolution of XK is governed by the following second 
KMO-Langevin equation: 

XK = --flsBXK -- lim ~SB,~ * XK q- 0~SBI (6.3) 
e,L0 

in the sense of random tempered distributions, where for each e > 0, YsB,,: is 
a function defined on R by 

7sB,~(t) = Z(o,~)(t) rio e ';psB(d2) (6.4) 

We have 

6~r2prl 1 
lim 7su,~(t) = Z(o, oo)(t) m* ~o x/- 7 for any t ~ R  (6.5) 

We find that the second KMO-Langevin equation (6.3) gives a realization 
for the Stokes-Boussinesq Langevin equation (5.5) that is characterized by 
a qualitative nature of T-positivity. However, we find from the results of 
Section 7 in Ref. 24 that the time evolution of X K cannot be described by 
the first KMO-Langevin equation which has white noise as the random 
force, because of conditions (5.21) and (5.23). We call Eq. (6.3) the second 
Stoke~Boussinesq-Langevin equation. From Theorem 4.1(iii), we have the 
Einstein relation: 

DK = RK(O)/flsB (6.6) 

where D K is the diffusion constant of X K, given by 

DK = RK(t) dt (6.7) 

Furthermore, it follows from (4.11) and (6.3) that 

RK(0 ) = (2g)l/2~sB (6.8) 

and so 

1 1 
DK - 2~[z )~r~7l'1/2 rt/ (6.9) 
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Concerning the long-time tail behavior of the correlation function R K, 
we know from Refs. 11 and 17 that the following Alder-Wainwright effect 
holds: 

lira (/?SB t) 3/2 RK(t) - RK(0) a (6.10) 

where a is a positive constant defined by 

,ol/2 (6.11) a = esB/PSB 

From (5.6), (5.11), (5.12), (6.8), and (6.11), we have 

I- 6~rr3p ] l/2 

_m + (~) - l r r3p j  (6.12) a 

i 

RK(0) 37rr3p 
2X/- ~ a = [ m  + (2/3)rcr3p] 3 (6.13) 

7. T H E  F IRST  S T O K E S - B O U S S I N E S Q - L A N G E V I N  E Q U A T I O N  

In this section we consider the nonnegative-definite function Rw on R 
defined by 

R w(t) = ~2  ~0 ~ e -I'l~ass(d2) (7.1) 

where c~ w is a fixed positive constant and asB is the Borel measure on 
[0, ~ )  in (5.20). Let X w =  (Xw(t); t e R )  be a real, stationary Gaussian 
process with mean zero and R w as its correlation function, and with h v/the 
outer function of Rw [see (H.1) in Ref. 24]. Then we note that the 
realization of X w  can be given by 

1 { ,  

Xw(t)  = ~ JR Ew(t -- s) dB(s) (7.2) 

where E w =  h w and (B(t); t~ R) is the one-dimensional Brownian motion 
in (6.2). Furthermore, we find from (5.14)-(5.17) that 

h w =  c~whs (7.3) 

Ew = c~ wEs (7.4) 

Since (5.14) implies that the triple (ccwC~sB , flsB, PSB) represents the first 
KMO-Langevin data associated with c~wasB satisfying conditions (5.22) 
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and (5.24), we know from (2.11) that the time evolution of Xw is governed 
by the following first KMO-Langevin equation: 

Xw = - f i sBXw - l i m  7sB,~ * X w +  C~wC~sBl~ (7.5) 
~,[0 

in the sense of random tempered distributions. 
As with the second Stokes-Boussinesq-Langevin equation (6.3), we 

find that Eq. (7.5) gives the realization for the Stokes-Boussinesq-Langevin 
equation (5.5), which is also characterized by a qualitative nature of T- 
positivity. Though the time evolution of Xw can be described by a second 
KMO-Langevin equation having a Kubo noise as a random force, the 
coefficients in the systematic part of its equation become different from 
those in the systematic part of the Stokes-Boussinesq Langevin equation 
(5.5), as we have seen in Sections 2 4 .  We call Eq. (7.5) the first Stoke~ 
Boussinesq-Langevin equation. 

From (ii) and (iv) in Theorem 2.1, we have the following generalized 
second fluctuation-dissipation theorem and generalized Einstein relation, 
respectively: 

(c,w~s.) 2 
- R w(0) Css (7.6) 

R w(0) CsB 
D w -  (7.7) 

/~sB ~sB 

where CsB is the generalized friction constant in the systematic part of the 
first Stokes-Boussinesq-Langevin equation (7.5) and D~v is the diffusion 
constant of Xw: }' CsB = 7z Iflsn -- i~[1 + esn ( - -  i ~ ) 1 / 2 ]  ] - 2  d~ (7.8) 

Dw= Rw(t) dt (7.9) 

We shall now investigate the value CSB/~SB in relation (7.7), which 
gives the degree of deviation from the Einstein relation. By (5.20) and (7.1), 
we get 

Rw(0)- (~w~s")~a3 fo ~ ~ "/7 dy (7.10) 
e~, 1 + y + ax~vy (1 -- y)2 + a2y 

which, together with the generalized Einstein relation (7.6), gives 

 F;o ' 1 /~sB = 2--~ l + y + a x / f ( l _ y ) 2 + a 2 y d y  (7.11) 
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Furthermore, it follows from (5.9), (5.20), and formula (v) in Theorem 2.1 
that 

CSB-- 1 = (~W0~SB)2a3 ,oo 1 1 
fisB Rw(O) flsBesBJo l+ y+ax~y(1-y)2+aZy d* 

and so by (7.10) 

Cs___ku l=a  S~( l+y+ax /7 ) ' [ (1 -y )2+a2y]  ~dy (7.12) 
/~s, IY (1 + ~ + a , /7) - '  , / 7 / [ ( 1 -  y)2 + ~'y] dy 

Next, we show that the Alder Wainwright effect also holds for the 
correlation function Rw. Since by (5.16), (5.17), (6.1), (7.1), and (7.4) 

Rw(t)=g2 fo forany t > 0  

we see from the bounded convergence theorem, (6.6), (6.8), and the Alder- 
Wainwright effect (6.10) for the correlation function RK that 

lim (flsut) 3/2 Rw(t)= ~2 RK(0) aDK 
,~ ~ 2re 2,,/7 

( ~ w ~ s B )  2 a 

2 2,jT/ sB 

which, together with the generalized Einstein relation (7.6) and (7.11), 
yields the following Alder Wainwright effect: 

lim (flsBt) 3/2 Rw(t) = x ~  ~ 1 dy 

(7.13) 

Finally, we calculate the diffusion constant Dw of Xw. From the 
generalized Einstein relation (7.7), (7.10), and (7.11), we get 

(g w0~sB) 2a2 1 (0~ w~s._.__ua~ 2 

D w -  fisBe~u = 2 f l s u \  esB / 

and so by (5.15), (5.16), and (6.11) 

D w =  �89 w/6~rq) 2 (7.14) 
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8. CONVERGENCE TO ORNSTEIN-UHLENBECK 
BROWNIAN MOTION 

It is known in statistical physics (~61 that 

a = 3(1 + 2 PolP) -1/2 (8.1) 

where P0 and p are the density of a Brownian particle and a fluid in the 
Stokes-Boussinesq-Langevin equation (5.5), respectively. Furthermore, it 
is also known that if Po is far bigger than p, that is, p is extremely small, 
then a Brownian particle moves according to the Langevin equation 
without delayed drift term. 

In this section, we show that the processes X K and X w  have an 
asymptotic behavior when a tends to zero for fixed r/ that is equivalent to 
the limp ~ 0 behavior for fixed q, by noting (6.12). 

By (5.8), we have 

lim hs(~)=hl/,~,/~(~ ) forany  ~ e R  (8,2) 
a ~ O  

1 1 
Ihs(~)12<~ forany  ~ e R  (8.3) 

1 f12 B + ~,t~l/2 1/2 ~t,  sB + (1~1/2)  
O ~ R e h s ( ~ ) < ~ 2 ~  m B~ +~ 2 forany  ~ e R  (8.4) 

where/?~ is a positive constant given by 

~ = 67rrrl/m (8.5) 

Since it follows from (E.2) in Ref. 24, (5.17), and (6.1) that 

RK(t) = 2(Re hs) A (t) (t e R) (8.6) 

we see from (8.2) and (8.4) that 

(27r) 1/2 
lim R K ( t ) = R ~ , ~ ( t ) =  e -~ l ' l  ( t e R )  (8.7) 
a~o m 

where c~  is a positive constant given by 

~ = [ 2( 2~z ) l/2(fl ~ /m ) ] ~/2 (8.8) 

On the other hand, since it follows from (H.4) in Ref. 24 and (7.3) that 

Rw( t )=~2( lh s ]2 )A( t )  ( tER)  (8.9) 
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we see from (8.2) and (8.8) that 

(C~w/m) - -//,I,I ( t c R )  (8.10) lira Rw(t)=R~,., , , , /~(t)- 2fl~ e 
a ~ 0 

We can conclude from (8.7) and (8.10) that 

lim XK = X~,~,. in law (8.l 1 ) 
a ~ 0  

lim Y w =  X~,.,,,./s~ in law (8.12) 

In particular, we find that in order that XK and Xw have the same limit 
process (the Ornstein-Uhlenbeck Brownian motion X~. /~)  as a tends to 
zero, it is a necessary and sufficient condition that 

O~ w = ( 12x~g3 /2 r t7  )i/2 (8.13 ) 

It then follows from (7.14) that under condition (8.13) the diffusion 
constant D w becomes 

1 1 
- - -  ( 8 . 1 4 )  Dw 3(2~r) I/2 r/ 

which coincides with the diffusion constants D K and Dx~,.~ of the 
processes X K and X~,f~.., given by (2.25) and (6.9), respectively. 

Next, we investigate the lima--* 0 behavior of the value CSB/fls~ in 
relation (7.7). By (7.12), we have 

CSB ~],~(1 + v + a ~ ) ' )  IvTaa/[(1--) ')2+a2)'] dl' 

flSB 1 = . ~  ~(; (l+3'+a~)') ' x ~ y ' / [ ( 1 - y ) 2 + a X y ] d ) '  

+ a  So~(1 + y + ~,f~)-' [(1- y)' + ~'y]-' ay 
~ (l+y+ax/-y) '~ / [ (1 -y)2+a2y]dy  

r-- 
~<x/a+ 

a ~ ?  [1/(1 _ y ) 2 ]  dy 

~ (1 + y + a,f j )- '  , fy/[(1- y)'+ a'y] dy 

and so, by letting a tend to zero, we have 

CsB 
lira - - =  1 
a ~ 0  ]~SB 
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which, together with (8.10), implies that the generalized Einstein relation 
(7.7) approaches the Einstein relation for the Ornstein-Uhlenbeck- 
Brownian motion X~,/3~. 

Finally, we investigate the double limits t --, oe and a ~ 0 of the ratio 
between the correlation functions RK and Rw. From (8.7) and (8.10), we 
immediately have 

Rw(t)) G 
rli~rn~ ! %  RK(t)]--12x/2rc3/2rt/ 

On the other hand, we see from (7.11) and the Alder Wainwright effect 
(6.10) and (7.13) for the correlation functions R K and R w  that 

Rw(t)  lim,~ (flsBt)3/2 Rw(t)  
lira RK(t) ~ o (fisBt) 3/2 RK(t) t ~ o ~  

= 2 CsBRw(O) 
f l sBRK( 0 ) 

and so, by (8.7), (8.10), and (8.15), 

G 
]irn ~ l ira RK(t)J  6xf27r3/2r~ 

Therefore, by (8.13), we have the following interesting limit theorem: 

lira b,lm 2 
a ~ O  

)i Z ( lira R w( t ) ~ = 1 
\ , ~ o  RK( t ) /  

(8.16) 

(8.17) 
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